Short Circuit Calculations: Circuit Breaker Asymmetric Switching Duty

Jan 2016
Short Circuit Calculations

• Short circuit calculations are governed by various well-known standards
 • IEC 60909 (Sometimes called IEC 909)
 • ENA G74 (UK only)
 • ANSI C37

• Most engineers are familiar with the basic concept of short circuit calculations, but sometimes do not fully appreciate some of the important subtleties.
 • Peak short circuit current
 • DC offset and asymmetry
 • Delayed current zeroes
Network X/R ratio & DC Component

• X/R is a simple comparison of reactance / resistance, but has a profound affect on the system behaviour for short circuits.

• High X/R ratios can lead to fault current exceeding switchgear capability!

• Most short circuit calculations do not adequately consider the X/R ratio of the network.

• In simple distribution networks the X/R ratio is normally small >10, but for larger networks, or systems that include generators it can be much higher.

• Standard IEC designed CBs’ only consider X/R ratios below 17 (20%)
Network X/R ratio & DC Component - II

• The DC component in fault current is caused by a high X/R ratio, which effectively offsets the normal fault current making it appear larger.

• The DC component usually decays within a few cycles ($\tau = 45\text{ms}$).

• Lack of consideration of DC component can circuit breakers chopping current, leading to restrikes, damage to equipment and risk to system and personnel.

• What causes high X/R ratio and DC Component?
 • Switchboards with a large percentage of motor load
 • Switchboards with generators connected to them
Short Circuit Current Waveform

- Asymmetrical Wave (a.c. + d.c.)
- D.C. Component
- R.M.S. Symmetrical Current
- Onset of Fault
- A.C. Component (symmetrical)

Voltage at Mid-wave

(90° Lag)
Peak Short Circuit Current

• Circuit breakers are usually defined / specified on the ‘break’ (I_b) rating. HV circuit breakers peak (I_p) short circuit rating is a multiple of its ‘break’ rating:
 • 2.5x I_b (50Hz) i.e. 25kA break & 62.5kA peak
 • 2.6x I_b (60Hz) i.e. 40kA break & 104kA

• In cases of large motor load or closely coupled generators, the network X/R ratio and %DC component increases, which increase the peak fault level.

• In these scenarios it is possible for a circuit breaker to achieve a satisfactory ‘break’ rating, but exceed the circuit breaker peak rating.

• Peak short circuit levels is best checked using a computer package such as ETAP.
Asymmetric Breaking Current

• The concept of asymmetric breaking is similar to the previous case – a high X/R ratio, leads to a high to a high DC component which offsets the fault current.

• The offset fault current appears higher and increases the breaker duty.

• This could exceed the breaker safe operating value leading and result in the breaker failing to clear the fault and possibly a catastrophic failure (explosion).

• The faster the circuit breaker operates the higher the DC component it ‘sees’ – i.e. a breaker with fast operating time and high speed differential protection can be at risk.
Delayed Current Zeroes

- Delayed current zeroes are an extreme occurrence when the system X/R ratio and %DC component is very high.

- The DC offset is so high that the first few cycles of the fault current do not pass through any current zeroes.

- It is relatively uncommon, but can happen with large generating stations.

- If current zeroes are delayed and the circuit breaker tries to operate it will fail to clear the fault and possibly lead to a catastrophic failure (explosion).

- Delayed current zeroes can have a significant impact on power system stability due to reduced fault clearance time.
Solutions

• A simple approximation is that if the circuit breakers asymmetrical duty is exceeded, the next standard (R10) series fault rating should be selected. (IEC 62271-100, Annex I)
 • I.e. at 11kV 28kA fault current at 30% DC should use a 40kA circuit breaker instead of 31.5kA

• Switchgear manufacturer guidance should be sought for large %DC component and proved through synthetic testing.

• Current zero passing can be determined graphically using computer software and the IEC 61363 method.

• Be careful – not all manufacturers understand the issue!!
Summary

- Industrial plants with large quantities of motors, or generating plants, can have a high X/R ratio.

- High X/R ratios can lead to a high peak fault currents and a high %DC component, which means that circuit breakers may not operate as desired – leading to dangerous conditions for operators and risk to plant and continuity.

- Delayed current zeroes can sometimes occur on large generation plants with very high X/R ratios – they can pose a significant risk to system operation and power system stability.

- SPE used the software package ETAP which allows detailed analysis including asymmetric duty and identification of delayed current zeroes.
What Next?

• All questions welcome!

• SPE’s website has a lot of further information, or contacts us to discuss your issue.
 • www.sp-eng.co.uk
 • info@sp-eng.co.uk

• How can SPE help you with your design?